|  Help  |  About  |  Contact Us

Publication : Novel role for galectin-1 in T-cells under physiological and pathological conditions.

First Author  Deák M Year  2015
Journal  Immunobiology Volume  220
Issue  4 Pages  483-9
PubMed ID  25468561 Mgi Jnum  J:325865
Mgi Id  MGI:6875113 Doi  10.1016/j.imbio.2014.10.023
Citation  Deak M, et al. (2015) Novel role for galectin-1 in T-cells under physiological and pathological conditions. Immunobiology 220(4):483-9
abstractText  Secreted, extracellular galectin-1 (exGal-1) but not intracellular Gal-1 (inGal-1) has been described as a strong immunosuppressive protein due to its major activity of inducing apoptosis of activated T-cells. It has previously been reported that T-cells express Gal-1 upon activation, however its participation in T-cell functions has remained largely elusive. To determine function of Gal-1 expressed by activated T-cells we have carried out a series of experiments. We have shown that Gal-1, expressed in Gal-1-transgenic Jurkat cells or in activated T-cells, remained intracellularly indicating that Gal-1-induced T-cell death was not a result of an autocrine effect of the de novo expressed Gal-1. Rather, a particular consequence of the inGal-1 expression was that T-cells became more sensitive to exGal-1 added either as a soluble protein or bound to the surface of a Gal-1-secreting effector cell. This was also verified when the susceptibility of activated T-cells from wild type or Gal-1 knockout mice to Gal-1-induced apoptosis were compared. Murine T-cells expressing Gal-1 were more sensitive to the cytotoxicity of the exGal-1 than their Gal-1 knockout counterparts. We also conducted a study with activated T-cells from patients with systemic lupus erythematosus (SLE), a disease in which dysregulated T-cell apoptosis has been well described. SLE T-cells expressed lower amounts of Gal-1 than healthy T-cells and were less sensitive to exGal-1. These results suggested a novel role of inGal-1 in T-cells as a regulator of T-cell response to exGal-1, and its likely contribution to the mechanism in T-cell apoptosis deficiency in lupus.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression