|  Help  |  About  |  Contact Us

Publication : Glucosamine activates autophagy in vitro and in vivo.

First Author  Caramés B Year  2013
Journal  Arthritis Rheum Volume  65
Issue  7 Pages  1843-52
PubMed ID  23606170 Mgi Jnum  J:258784
Mgi Id  MGI:6147967 Doi  10.1002/art.37977
Citation  Carames B, et al. (2013) Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum 65(7):1843-52
abstractText  OBJECTIVE: Aging-associated changes in articular cartilage represent a main risk factor for osteoarthritis (OA). Autophagy is an essential cellular homeostasis mechanism. Aging-associated or experimentally induced defects in autophagy contribute to organismal- and tissue-specific aging, while enhancement of autophagy may protect against certain aging-related pathologies such as OA. The objective of this study was to determine whether glucosamine can activate autophagy. METHODS: Chondrocytes from normal human articular cartilage were treated with glucosamine (0.1- 10 mM). Autophagy activation and phosphorylation levels of Akt, FoxO3, and ribosomal protein S6 were determined by Western blotting. Autophagosome formation was analyzed by confocal microscopy. Reporter mice systemically expressing green fluorescent protein (GFP) fused to light chain 3 (LC3) (GFP-LC3-transgenic mice) were used to assess changes in autophagy in response to starvation and glucosamine treatment. RESULTS: Glucosamine treatment of chondrocytes activated autophagy, as indicated by increased LC3-II levels, formation of LC3 puncta, and increased LC3 turnover. This was associated with glucosamine-mediated inhibition of the Akt/FoxO3/mammalian target of rapamycin pathway. Administration of glucosamine to GFP-LC3-transgenic mice markedly activated autophagy in articular cartilage. CONCLUSION: Glucosamine modulates molecular targets of the autophagy pathway in vitro and in vivo, and the enhancement of autophagy is mainly dependent on the Akt/FoxO/mTOR pathway. These findings suggest that glucosamine is an effective autophagy activator and should motivate future studies on the efficacy of glucosamine in modifying aging-related cellular changes and supporting joint health.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression