|  Help  |  About  |  Contact Us

Publication : Knockout of SOD1 alters murine hepatic glycolysis, gluconeogenesis, and lipogenesis.

First Author  Wang L Year  2012
Journal  Free Radic Biol Med Volume  53
Issue  9 Pages  1689-96
PubMed ID  22974764 Mgi Jnum  J:190130
Mgi Id  MGI:5448108 Doi  10.1016/j.freeradbiomed.2012.08.570
Citation  Wang L, et al. (2012) Knockout of SOD1 alters murine hepatic glycolysis, gluconeogenesis, and lipogenesis. Free Radic Biol Med 53(9):1689-96
abstractText  We previously observed a stronger effect of knockout of Cu,Zn-superoxide dismutase (SOD1) than that of Se-dependent glutathione peroxidase 1 (GPX1) on murine body weight and glucose homeostasis. Two experiments were conducted to determine how hepatic lipid profiles and key metabolic regulators were correlated with this difference. SOD1(-/-) and GPX1(-/-) mice and their respective wild-type (WT) littermates (n=6 or 7/group, male) were fed a Se-adequate Torula yeast-sucrose diet and killed at 6 months of age to collect liver samples. In Experiment 1, fasted SOD1(-/-) mice displayed pyruvate intolerance and a 61% decrease (P<0.05) in liver glycogen compared with their WT littermates. The former had lower (P<0.05) activities of phosphoenolpyruvate carboxykinase, total protein phosphatase, and protein phosphatase 2A, but a higher (P<0.05) activity of glucokinase in the liver than the latter. In contrast, hepatic concentrations of total cholesterol, triglycerides, and nonesterified fatty acids were increased by 11 to 100% (P<0.05) in the SOD1(-/-) mice. Meanwhile, these mice had elevated (P<0.05) hepatic protein levels of sterol-regulatory element binding proteins 1 and 2, p53 MAPK, total and phosphorylated AMP-activated protein kinase alpha1 protein, protein tyrosine phosphatase 1B, and protein phosphatase 2B. In Experiment 2, GPX1(-/-) mice and their WT littermates were compared, but showed no difference in any of the measures. In conclusion, knockout of SOD1, but not GPX1, led to a decreased liver glycogen storage synchronized with pyruvate intolerance and elevated hepatic lipid profiles in adult mice. This striking comparison was possibly due to unique impacts of these two knockouts on intracellular tone of H(2)O(2) and key regulators of liver gluconeogenesis, glycolysis, and lipogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

5 Bio Entities

Trail: Publication

0 Expression