|  Help  |  About  |  Contact Us

Publication : Superovulation alters the expression of imprinted genes in the midgestation mouse placenta.

First Author  Fortier AL Year  2008
Journal  Hum Mol Genet Volume  17
Issue  11 Pages  1653-65
PubMed ID  18287259 Mgi Jnum  J:135660
Mgi Id  MGI:3794239 Doi  10.1093/hmg/ddn055
Citation  Fortier AL, et al. (2008) Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 17(11):1653-65
abstractText  Imprinted genes play important roles in embryonic growth and development as well as in placental function. Many imprinted genes acquire their epigenetic marks during oocyte growth, and this period may be susceptible to epigenetic disruption following hormonal stimulation. Superovulation has been shown to affect growth and development of the embryo, but an effect on imprinted genes has not been shown in postimplantation embryos. In the present study, we examined the effect of superovulation/in vivo development or superovulation/3.5dpc (days post-coitum) embryo transfer on the allelic expression of Snrpn, Kcnq1ot1 and H19 in embryos and placentas at 9.5 days of gestation. Superovulation followed by in vivo development resulted in biallelic expression of Snrpn and H19 in 9.5dpc placentas while Kcnq1ot1 was not affected; in the embryos, there was normal monoallelic expression of the three imprinted genes. We did not observe significant DNA methylation perturbations in the differentially methylated regions of Snrpn or H19. Superovulation followed by embryo transfer at 3.5dpc resulted in biallelic expression of H19 in the placenta. The expression of an important growth factor closely linked to H19, Insulin-like growth factor-II, was increased in the placenta following superovulation with or without embryo transfer. These results show that both maternally and paternally methylated imprinted genes were affected, suggesting that superovulation compromises oocyte quality and interferes with the maintenance of imprinting during preimplantation development. Our findings contribute to the evidence that mechanisms for maintaining imprinting are less robust in trophectoderm-derived tissues, and have clinical implications for the screening of patients following assisted reproduction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression