|  Help  |  About  |  Contact Us

Publication : Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene.

First Author  Khosla S Year  1999
Journal  Mol Cell Biol Volume  19
Issue  4 Pages  2556-66
PubMed ID  10082521 Mgi Jnum  J:53949
Mgi Id  MGI:1333674 Doi  10.1128/mcb.19.4.2556
Citation  Khosla S, et al. (1999) Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene. Mol Cell Biol 19(4):2556-66
abstractText  The mouse H19 gene is expressed from the maternal chromosome exclusively. A 2-kb region at 2 to 4 kb upstream of H19 is paternally methylated throughout development, and these sequences are necessary for the imprinted expression of both H19 and the 5'-neighboring Igf2 gene. In particular, on the maternal chromosome this element appears to insulate the Igf2 gene from enhancers located downstream of H19, We analyzed the chromatin organization of this element by assaying its sensitivity to nucleases in nuclei. Six DNase I hypersensitive sites (HS sites) were detected on the unmethylated maternal chromosome exclusively; the two most prominent of which mapped 2.25 and 2.75 kb 5' to the H19 transcription initiation site. Five of the maternal HS sites were present in expressing and nonexpressing tissues acid in embryonic stem (ES) cells. They seem, therefore, to reflect the maternal origin of the chromosome rather than the expression of H19, A sixth maternal HS site, at 3.45 kb upstream of H19, was detected in ES cells only. The nucleosomal organization of this element was analyzed in tissues and ES cells by micrococcal nuclease digestion. Specifically on the maternal chromosome, an unusual and strong banding pattern was obtained, suggestive of a nonnucleosomal organization. From our studies, it appears that the unusual chromatin organization with the presence of HS sites (maternal chromosome) and DNA methylation (paternal chromosome) in this element are mutually exclusive and reflect alternate epigenetic states. In addition, our data suggest that nonhistone proteins are associated with the maternal chromosome and that these might be involved in its boundary function.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression