|  Help  |  About  |  Contact Us

Publication : Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice.

First Author  Sultana A Year  2014
Journal  Exp Neurol Volume  261
Pages  802-11 PubMed ID  25218043
Mgi Jnum  J:217902 Mgi Id  MGI:5616036
Doi  10.1016/j.expneurol.2014.09.002 Citation  Sultana A, et al. (2014) Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice. Exp Neurol 261:802-11
abstractText  Olfactomedin 2 (Olfm2) is a secretory glycoprotein belonging to the family of olfactomedin domain-containing proteins. A previous study has shown that a mutation in OLFM2 is associated with primary open angle glaucoma in Japanese patients. In the present study, we generated Olfm2 deficient mice by replacing the Olfm2 gene with the LacZ gene. The loss of Olfm2 resulted in no gross abnormalities. However, Olfm2 null mice showed reduced exploration, locomotion, olfactory sensitivity, abnormal motor coordination, and anxiety related behavior. The pattern of the Olfm2 gene expression was studied in the brain and eye using beta-galactosidase staining. In the brain, Olfm2 was mainly expressed in the olfactory bulb, cortex, piriform cortex, olfactory trabeculae, and inferior and superior colliculus. In the eye expression was detected mainly in retinal ganglion cells. In Olfm2 null mice, the amplitude of the first negative wave in the visual evoked potential test was significantly reduced as compared with wild-type littermates. Olfm2, similar to Olfm1, interacted with the GluR2 subunit of the AMPAR complexes and Olfm2 co-segregated with the AMPA receptor subunit GluR2 and other synaptic proteins in the synaptosomal membrane fraction upon biochemical fractionation of the adult mice cortex and retina. Immunoprecipitation from the synaptosomal membrane fraction of the Olfm2 null mouse brain cortex using the GluR2 antibody showed reduced levels of several components of the AMPAR complex in the immunoprecipitates including Olfm1, PSD95 and CNIH2. These results suggest that heterodimers of Olfm1 and Olfm2 interact with AMPAR more efficiently than Olfm2 homodimers and that Olfm2 plays a role in the organization of the AMPA receptor complexes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

29 Bio Entities

Trail: Publication

104 Expression

Trail: Publication