|  Help  |  About  |  Contact Us

Publication : Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells.

First Author  Glodek AM Year  2007
Journal  Leukemia Volume  21
Issue  8 Pages  1723-32
PubMed ID  17568820 Mgi Jnum  J:168135
Mgi Id  MGI:4881911 Doi  10.1038/sj.leu.2404769
Citation  Glodek AM, et al. (2007) Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells. Leukemia 21(8):1723-32
abstractText  Hematopoietic stem/progenitor cells (HSC/P) reside in the bone marrow in distinct anatomic locations (niches) to receive growth, survival and differentiation signals. HSC/P localization and migration between niches depend on cell-cell and cell-matrix interactions, which result from the cooperation of cytokines, chemokines and adhesion molecules. The CXCL12-CXCR4 pathway, in particular, is essential for myelopoiesis and B lymphopoiesis but the molecular mechanisms of CXCL12 action remain unclear. We previously noted a strong correlation between prolonged CXCL12-mediated focal adhesion kinase (FAK) phosphorylation and sustained pro-adhesive responses in progenitor B cells, but not in mature B cells. Although FAK has been well studied in adherent fibroblasts, its function in hematopoietic cells is not defined. We used two independent approaches to reduce FAK expression in (human and mouse) progenitor cells. RNA interference (RNAi)-mediated FAK silencing abolished CXCL12-induced responses in human pro-B leukemia, REH cells. FAK-deficient REH cells also demonstrated reduced CXCL12-induced activation of the GTPase Rap1, suggesting the importance of FAK in CXCL12-mediated integrin activation. Moreover, in FAK(flox/flox) hematopoietic precursor cells, Cre-mediated FAK deletion resulted in impaired CXCL12-induced chemotaxis. These studies suggest that FAK may function as a key intermediary in signaling pathways controlling hematopoietic cell lodgment and lineage development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression