|  Help  |  About  |  Contact Us

Publication : Developmental renin expression in mice with a defective renin-angiotensin system.

First Author  Machura K Year  2009
Journal  Am J Physiol Renal Physiol Volume  297
Issue  5 Pages  F1371-80
PubMed ID  19710239 Mgi Jnum  J:153990
Mgi Id  MGI:4366683 Doi  10.1152/ajprenal.00378.2009
Citation  Machura K, et al. (2009) Developmental renin expression in mice with a defective renin-angiotensin system. Am J Physiol Renal Physiol 297(5):F1371-80
abstractText  During nephrogenesis, renin expression shifts from the vessel walls of interlobular arteries to the terminal portions of afferent arterioles in a wavelike pattern. Since the mechanisms responsible for the developmental deactivation of renin expression are as yet unknown, we hypothesized that the developing renin-angiotensin system (RAS) may downregulate itself via negative feedback to prevent overactivity of renin. To test for a possible role of angiotensin II in the developmental deactivation of renin expression, we studied the development of intrarenal renin expression in mice lacking ANG II AT1a, AT1b, or AT2 receptors and in animals with abolished circulating ANG II due to deletion of the gene for angiotensin I-converting enzyme (ACE). The development of intrarenal renin expression was normal in mice lacking ANG II AT1b or AT2 receptors. In animals lacking both ANG II AT1a and AT1b receptors, ACE, or ANG II AT1a receptors, renin expression was normal early and renin disappeared from mature vessels until development of cortical interlobular and afferent arterioles began. The development of cortical vessels in these genotypes was accompanied by a markedly increased number of renin-expressing cells, many of which were ectopically located and attached in a grapelike fashion to the outer vessel perimeter. Although the number of renin-expressing cells declined during final maturation of the kidneys, the atypical distribution pattern of renin cells was maintained. These findings suggest that ANG II does not play a central role in the typical developmental shift in renin expression from the arcuate vessels to the afferent arterioles. During postnatal maturation of mouse kidneys, interruption of the RAS causes severe hyperplasia of renin cells via a mechanism that centrally involves AT(1a) receptors. However, the distribution pattern of renin cells in adult kidneys with an interrupted RAS does not mimic any normal developmental stage since renin expression is frequently found in cells outside the arteriolar vessel walls in RAS mutants.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression