|  Help  |  About  |  Contact Us

Publication : AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia.

First Author  Zaha VG Year  2016
Journal  J Mol Cell Cardiol Volume  91
Pages  104-13 PubMed ID  26746142
Mgi Jnum  J:251139 Mgi Id  MGI:6102347
Doi  10.1016/j.yjmcc.2015.12.032 Citation  Zaha VG, et al. (2016) AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol 91:104-13
abstractText  AMP-activated kinase (AMPK) is a stress responsive kinase that regulates cellular metabolism and protects against cardiomyocyte injury during ischemia-reperfusion (IR). Mitochondria play an important role in cell survival, but the specific actions of activated AMPK in maintaining mitochondrial integrity and function during reperfusion are unknown. Thus, we assessed the consequences of AMPK inactivation on heart mitochondrial function during reperfusion. Mouse hearts expressing wild type (WT) or kinase-dead (KD) AMPK were studied. Mitochondria isolated from KD hearts during reperfusion had intact membrane integrity, but demonstrated reduced oxidative capacity, increased hydrogen peroxide production and decreased resistance to mitochondrial permeability transition pore opening compared to WT. KD hearts showed increased activation of the mitogen activated protein kinase kinase 4 (MKK4) and downstream c-Jun terminal kinase (JNK) and greater necrosis during reperfusion after coronary occlusion. Transgenic expression of mitochondrial catalase (MCAT) prevented the excessive cardiac JNK activation and attenuated the increased myocardial necrosis observed during reperfusion in KD mice. Inhibition of JNK increased the resistance of KD hearts to mPTP opening, contractile dysfunction and necrosis during IR. Thus, intrinsic activation of AMPK is critical to prevent excess mitochondrial reactive oxygen production and consequent JNK signaling during reperfusion, thereby protecting against mPTP opening, irreversible mitochondrial damage and myocardial injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression