|  Help  |  About  |  Contact Us

Publication : Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection.

First Author  Wuest TR Year  2008
Journal  J Immunol Volume  181
Issue  11 Pages  7985-93
PubMed ID  19017990 Mgi Jnum  J:142374
Mgi Id  MGI:3821430 Doi  10.4049/jimmunol.181.11.7985
Citation  Wuest TR, et al. (2008) Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection. J Immunol 181(11):7985-93
abstractText  The chemokine, CXCL10, chemotactic for NK cells, activated T cells, and dendritic cells is highly expressed during viral infections, including HSV-1. The importance of this chemokine to the control of HSV-1 infection was tested using mice deficient in CXCL10 (CXCL10(-/-)). Following corneal infection, HSV-1 viral titers were elevated in the nervous system of CXCL10(-/-) mice, which correlated with defects in leukocyte recruitment including dendritic cells, NK cells, and HSV-1-specific CD8(+) T cells to the brain stem. In the absence of NK cells and HSV-1-specific CD8(+) T cells in wild-type (WT) or CXCL10(-/-) mice, similar levels of virus were recovered in the nervous system, suggesting these cells are responsible for the observed defects in the control of viral replication in CXCL10(-/-) mice. Leukocyte mobilization was also compared between WT, CXCL10(-/-), and mice deficient in the only known receptor for CXCL10, CXCR3 (CXCR3 (-/-)). NK cell mobilization was comparably reduced in both CXCL10(-/-) and CXCR3(-/-) mice relative to WT animals. However, the reduction in mobilization of HSV-1-specific CD8(+) T cells in CXCL10(-/-) was not observed in CXCR3(-/-) mice following HSV-1 infection. The defect was not the result of an alternative receptor for CXCL10, as Ag-specific CD8(+) T cell recruitment was not reduced in mice which were deficient in both CXCL10 and CXCR3. Thus, CXCL10 deficiency results in reduced mobilization of HSV-1-specific CD8(+) T cells as a result of dysregulation of CXCR3 signaling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

9 Bio Entities

Trail: Publication

0 Expression