|  Help  |  About  |  Contact Us

Protein Domain : Serine/threonine-protein kinase, active site

Primary Identifier  IPR008271 Type  Active_site
Short Name  Ser/Thr_kinase_AS
description  Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse thetransfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity []:Serine/threonine-protein kinasesTyrosine-protein kinasesDual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)Protein kinase function is evolutionarily conserved from Escherichia coli to human []. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation []. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [].Eukaryotic protein kinases [, , , ]are enzymesthat belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. There are a number of conserved regions in the catalytic domain of protein kinases. In the N-terminal extremity of the catalytic domain there is aglycine-rich stretch of residues in thevicinity of a lysine residue, which has been shown to be involved in ATP binding. In the central part of the catalytic domain there is a conserved aspartic acid residue, which is important for the catalytic activity of the enzyme []. This signature contains the active site aspartate residue.

0 Child Features

0 Parent Features

1145 Protein Domain Regions