|  Help  |  About  |  Contact Us

Publication : Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene.

First Author  Parmacek MS Year  1992
Journal  Mol Cell Biol Volume  12
Issue  5 Pages  1967-76
PubMed ID  1569934 Mgi Jnum  J:589
Mgi Id  MGI:49126 Doi  10.1128/mcb.12.5.1967
Citation  Parmacek MS, et al. (1992) Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene. Mol Cell Biol 12(5):1967-76
abstractText  The slow/cardiac troponin C (cTnC) gene has been used as a model system for defining the molecular mechanisms that regulate cardiac and skeletal muscle-specific gene expression during mammalian development. cTnC is expressed continuously in both embryonic and adult cardiac myocytes but is expressed only transiently in embryonic fast skeletal myotubes. We have reported previously that cTnC gene expression in skeletal myotubes is controlled by a developmentally regulated, skeletal muscle-specific transcriptional enhancer located within the first intron of the gene (bp 997 to 1141). In this report, we show that cTnC gene expression in cardiac myocytes both in vitro and in vivo is regulated by a distinct and independent transcriptional promoter and enhancer located within the immediate 5' flanking region of the gene (bp -124 to +32). DNase I footprint and electrophoretic mobility shift assay analyses demonstrated that this cardiac-specific promoter/enhancer contains five nuclear protein binding sites (designated CEF1, CEF-2, and CPF1-3), four of which bind novel cardiac-specific nuclear protein complexes. Functional analysis of the cardiac-specific cTnC enhancer revealed that mutation of either the CEF-1 or CEF-2 nuclear protein binding site abolished the activity of the cTnC enhancer in cardiac myocytes. Taken together, these results define a novel mechanism for developmentally regulating a single gene in multiple muscle cell lineages. In addition, they identify previously undefined cardiac-specific transcriptional regulatory motifs and trans-acting factors. Finally, they demonstrate distinct transcriptional regulatory pathways in cardiac and skeletal muscle.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression