|  Help  |  About  |  Contact Us

Publication : Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown.

First Author  Wiederstein JL Year  2018
Journal  Cell Rep Volume  23
Issue  5 Pages  1342-1356
PubMed ID  29719249 Mgi Jnum  J:270838
Mgi Id  MGI:6278325 Doi  10.1016/j.celrep.2018.03.136
Citation  Wiederstein JL, et al. (2018) Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown. Cell Rep 23(5):1342-1356
abstractText  Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a beta-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c(-/-) muscles. In addition, we demonstrate that METTL21C interacts with the ATPase p97 (VCP), which is mutated in various human MSP conditions. We reveal that METTL21C trimethylates p97 on the Lys315 residue and found that loss of this modification reduced p97 hexamer formation and ATPase activity in vivo. We conclude that the methyltransferase METTL21C is an important modulator of protein degradation in skeletal muscle under both normal and enhanced protein breakdown conditions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

Trail: Publication

99 Expression

Trail: Publication