|  Help  |  About  |  Contact Us

Publication : METTL3-mediated N<sup>6</sup>-methyladenosine mRNA modification enhances long-term memory consolidation.

First Author  Zhang Z Year  2018
Journal  Cell Res Volume  28
Issue  11 Pages  1050-1061
PubMed ID  30297870 Mgi Jnum  J:294441
Mgi Id  MGI:6456395 Doi  10.1038/s41422-018-0092-9
Citation  Zhang Z, et al. (2018) METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res 28(11):1050-1061
abstractText  The formation of long-term memory is critical for learning ability and social behaviors of humans and animals, yet its underlying mechanisms are largely unknown. We found that the efficacy of hippocampus-dependent memory consolidation is regulated by METTL3, an RNA N(6)-methyladenosine (m(6)A) methyltransferase, through promoting the translation of neuronal early-response genes. Such effect is exquisitely dependent on the m(6)A methyltransferase function of METTL3. Depleting METTL3 in mouse hippocampus reduces memory consolidation ability, yet unimpaired learning outcomes can be achieved if adequate training was given or the m(6)A methyltransferase function of METTL3 was restored. The abundance of METTL3 in wild-type mouse hippocampus is positively correlated with learning efficacy, and overexpression of METTL3 significantly enhances long-term memory consolidation. These findings uncover a direct role of RNA m(6)A modification in regulating long-term memory formation, and also indicate that memory efficacy difference among individuals could be compensated by repeated learning.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression