|  Help  |  About  |  Contact Us

Publication : The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells.

First Author  Hassler JR Year  2015
Journal  PLoS Biol Volume  13
Issue  10 Pages  e1002277
PubMed ID  26469762 Mgi Jnum  J:226385
Mgi Id  MGI:5697208 Doi  10.1371/journal.pbio.1002277
Citation  Hassler JR, et al. (2015) The IRE1alpha/XBP1s Pathway Is Essential for the Glucose Response and Protection of beta Cells. PLoS Biol 13(10):e1002277
abstractText  Although glucose uniquely stimulates proinsulin biosynthesis in beta cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1alpha) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary beta cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1alpha deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective beta cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1alpha degrades insulin mRNAs, Ire1alpha deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, beta cell failure upon Ire1alpha deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1alpha deletion in beta cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with beta cell-specific Ire1alpha deletion. The results demonstrate that glucose activates IRE1alpha-mediated Xbp1 splicing to expand the secretory capacity of the beta cell for increased proinsulin synthesis and to limit oxidative stress that leads to beta cell failure.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression