|  Help  |  About  |  Contact Us

Publication : Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex.

First Author  Myers AK Year  2014
Journal  J Neurosci Volume  34
Issue  23 Pages  7787-801
PubMed ID  24899703 Mgi Jnum  J:211632
Mgi Id  MGI:5575794 Doi  10.1523/JNEUROSCI.4695-13.2014
Citation  Myers AK, et al. (2014) Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex. J Neurosci 34(23):7787-801
abstractText  Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex. Migrating cortical interneurons express Jnk proteins at the entrance to the cortical rudiment and have enriched expression of Jnk1 relative to noninterneuronal cortical cells. Pharmacological blockade of JNK signaling in ex vivo slice cultures resulted in dose-dependent and highly specific disruption of interneuron migration into the nascent cortex. Time-lapse imaging revealed that JNK-inhibited cortical interneurons advanced slowly and assumed aberrant migratory trajectories while traversing the cortical entry zone. In vivo analyses of JNK-deficient embryos supported our ex vivo pharmacological data. Deficits in interneuron migration were observed in Jnk1 but not Jnk2 single nulls, and those migratory deficits were further exacerbated when homozygous loss of Jnk1 was combined with heterozygous reduction of Jnk2. Finally, genetic ablation of Jnk1 and Jnk2 from cortical interneurons significantly perturbed migration in vivo, but not in vitro, suggesting JNK activity functions to direct their guidance rather than enhance their motility. These data suggest JNK signaling, predominantly mediated by interneuron expressed Jnk1, is required for guiding migration of cortical interneurons into and within the developing cerebral cortex.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression