|  Help  |  About  |  Contact Us

Publication : Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland.

First Author  Annunziato S Year  2016
Journal  Genes Dev Volume  30
Issue  12 Pages  1470-80
PubMed ID  27340177 Mgi Jnum  J:233376
Mgi Id  MGI:5784568 Doi  10.1101/gad.279190.116
Citation  Annunziato S, et al. (2016) Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 30(12):1470-80
abstractText  Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

14 Bio Entities

0 Expression