|  Help  |  About  |  Contact Us

Publication : Use of CRISPR/Cas9-engineered INS-1 pancreatic β cells to define the pharmacology of dual GIPR/GLP-1R agonists.

First Author  Naylor J Year  2016
Journal  Biochem J Volume  473
Issue  18 Pages  2881-91
PubMed ID  27422784 Mgi Jnum  J:245110
Mgi Id  MGI:5918649 Doi  10.1042/BCJ20160476
Citation  Naylor J, et al. (2016) Use of CRISPR/Cas9-engineered INS-1 pancreatic beta cells to define the pharmacology of dual GIPR/GLP-1R agonists. Biochem J 473(18):2881-91
abstractText  Dual-agonist molecules combining glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activity represent an exciting therapeutic strategy for diabetes treatment. Although challenging due to shared downstream signalling pathways, determining the relative activity of dual agonists at each receptor is essential when developing potential novel therapeutics. The challenge is exacerbated in physiologically relevant cell systems expressing both receptors. To this end, either GIP receptors (GIPR) or GLP-1 receptors (GLP-1R) were ablated via RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonucleases in the INS-1 pancreatic beta-cell line. Multiple clonal cell lines harbouring gene disruptions for each receptor were isolated and assayed for receptor activity to identify functional knockouts (KOs). cAMP production in response to GIPR or GLP-1R activation was abolished and GIP- or GLP-1-induced potentiation of glucose-stimulated insulin secretion (GSIS) was attenuated in the cognate KO cell lines. The contributions of individual receptors derived from cAMP and GSIS assays were confirmed in vivo using GLP-1R KO mice in combination with a monoclonal antibody antagonist of GIPR. We have successfully applied CRISPR/Cas9-engineered cell lines to determining selectivity and relative potency contributions of dual-agonist molecules targeting receptors with overlapping native expression profiles and downstream signalling pathways. Specifically, we have characterised molecules as biased towards GIPR or GLP-1R, or with relatively balanced potency in a physiologically relevant beta-cell system. This demonstrates the broad utility of CRISPR/Cas9 when applied to native expression systems for the development of drugs that target multiple receptors, particularly where the balance of receptor activity is critical.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression