|  Help  |  About  |  Contact Us

Publication : Excitatory amino acid neurotransmission through both NMDA and non-NMDA receptors is involved in the anticonvulsant activity of felbamate in DBA/2 mice.

First Author  De Sarro G Year  1994
Journal  Eur J Pharmacol Volume  262
Issue  1-2 Pages  11-9
PubMed ID  7529182 Mgi Jnum  J:20613
Mgi Id  MGI:70322 Doi  10.1016/0014-2999(94)90022-1
Citation  De Sarro G, et al. (1994) Excitatory amino acid neurotransmission through both NMDA and non-NMDA receptors is involved in the anticonvulsant activity of felbamate in DBA/2 mice. Eur J Pharmacol 262(1-2):11-9
abstractText  The anticonvulsant activity of felbamate against sound-induced seizures was studied in the DBA/2 mouse model. Felbamate (10-300 mg/kg, i.p.) produced dose-dependent effects with ED50 values for the suppression of tonic, clonic and wild running phases of 23.1, 48.8 and 114.6 mg/kg, respectively. Felbamate also protected DBA/2 mice from N-methyl-D-aspartate (NMDA)-induced seizures with ED50 values of 12.1 and 29 mg/kg for tonus and clonus, respectively. Pretreatment with glycine, an agonist to the glycine/NMDA receptors, shifted the dose-response effect of felbamate to the right (ED50 = 56.8 against tonus and 94.8 mg/kg versus clonus). Similarly, D-serine, an agonist at the glycine site, shifted the ED50 of felbamate against the tonic component of audiogenic seizures from 23.1 to 78.1, and that against clonus from 48.8 to 90.3 mg/kg. Felbamate was also potent to prevent seizures induced by administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), an AMPA/kainate receptor agonist (ED50 = 11.8 and 20.9 mg/kg, against tonus and clonus, respectively). The data indicate that felbamate is an effective anticonvulsant drug in the genetic model of seizure-prone DBA/2 mice. Our findings suggest that the anticonvulsant properties of felbamate depend upon its interaction with neurotransmission mediated by both the glycine/NMDA and the AMPA/kainate receptor complex.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression