|  Help  |  About  |  Contact Us

Publication : PH-domain-driven targeting of collybistin but not Cdc42 activation is required for synaptic gephyrin clustering.

First Author  Reddy-Alla S Year  2010
Journal  Eur J Neurosci Volume  31
Issue  7 Pages  1173-84
PubMed ID  20345913 Mgi Jnum  J:160948
Mgi Id  MGI:4456338 Doi  10.1111/j.1460-9568.2010.07149.x
Citation  Reddy-Alla S, et al. (2010) PH-domain-driven targeting of collybistin but not Cdc42 activation is required for synaptic gephyrin clustering. Eur J Neurosci 31(7):1173-84
abstractText  Collybistin (Cb) is a brain-specific guanine nucleotide exchange factor (GEF) that is essential for the synaptic clustering of gephyrin and GABAA receptors in selected regions of the mammalian central nervous system. It has been previously proposed that Cb regulates gephyrin clustering by activating Cdc42, and thus acts as a signal transducer in a membrane activation process which labels postsynaptic membrane domains for inhibitory synapse formation. Here, we dissected the functional roles of the Dbl-homology (DH) and pleckstrin homology (PH) domains of the constitutively active splice variant Cb II by substituting conserved amino acid residues that are required for GEF activity towards Cdc42 and phosphoinositide binding, respectively. A Cb II mutant lacking any detectable GEF activity towards Cdc42 was still fully active in inducing gephyrin scaffold formation, both in transfected NIH-3T3 cells and in cultured hippocampal neurons. Furthermore, mice with a forebrain-specific inactivation of the Cdc42 gene displayed normal densities of gephyrin and GABA(A) receptor clusters in the hippocampus. In contrast, substitution of Cb II PH-domain residues essential for phosphoinositide binding abolished gephyrin recruitment to synaptic sites. Our results provide evidence that the formation of gephyrin scaffolds at inhibitory synapses requires an intact Cb II PH-domain but is Cdc42-independent.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression