|  Help  |  About  |  Contact Us

Publication : S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model.

First Author  Zhang N Year  2015
Journal  J Neurosci Volume  35
Issue  5 Pages  1892-904
PubMed ID  25653350 Mgi Jnum  J:218971
Mgi Id  MGI:5619207 Doi  10.1523/JNEUROSCI.3658-14.2015
Citation  Zhang N, et al. (2015) S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci 35(5):1892-904
abstractText  Accumulating genetic evidence suggests that schizophrenia (SZ) is associated with individually rare copy number variations (CNVs) of diverse genes, often specific to single cases. However, the causality of these rare mutations remains unknown. One of the rare CNVs found in SZ cohorts is the duplication of Synaptic Scaffolding Molecule (S-SCAM, also called MAGI-2), which encodes a postsynaptic scaffolding protein controlling synaptic AMPA receptor levels, and thus the strength of excitatory synaptic transmission. Here we report that, in a transgenic mouse model simulating the duplication conditions, elevation of S-SCAM levels in excitatory neurons of the forebrain was sufficient to induce multiple SZ-related endophenotypes. S-SCAM transgenic mice showed an increased number of lateral ventricles and a reduced number of parvalbumin-stained neurons. In addition, the mice exhibited SZ-like behavioral abnormalities, including hyperlocomotor activity, deficits in prepulse inhibition, increased anxiety, impaired social interaction, and working memory deficit. Notably, the S-SCAM transgenic mice showed a unique sex difference in showing these behavioral symptoms, which is reminiscent of human conditions. These behavioral abnormalities were accompanied by hyperglutamatergic function associated with increased synaptic AMPA receptor levels and impaired long-term potentiation. Importantly, reducing glutamate release by the group 2 metabotropic glutamate receptor agonist LY379268 ameliorated the working memory deficits in the transgenic mice, suggesting that hyperglutamatergic function underlies the cognitive functional deficits. Together, these results contribute to validate a causal relationship of the rare S-SCAM CNV and provide supporting evidence for the rare CNV hypothesis in SZ pathogenesis. Furthermore, the S-SCAM transgenic mice provide a valuable new animal model for studying SZ pathogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression