|  Help  |  About  |  Contact Us

Publication : Zac1 is an essential transcription factor for cardiac morphogenesis.

First Author  Yuasa S Year  2010
Journal  Circ Res Volume  106
Issue  6 Pages  1083-91
PubMed ID  20167925 Mgi Jnum  J:171037
Mgi Id  MGI:4948223 Doi  10.1161/CIRCRESAHA.109.214130
Citation  Yuasa S, et al. (2010) Zac1 is an essential transcription factor for cardiac morphogenesis. Circ Res 106(6):1083-91
abstractText  RATIONALE: The transcriptional networks guiding heart development remain poorly understood, despite the identification of several essential cardiac transcription factors. OBJECTIVE: To isolate novel cardiac transcription factors, we performed gene chip analysis and found that Zac1, a zinc finger-type transcription factor, was strongly expressed in the developing heart. This study was designed to investigate the molecular and functional role of Zac1 as a cardiac transcription factor. METHODS AND RESULTS: Zac1 was strongly expressed in the heart from cardiac crescent stages and in the looping heart showed a chamber-restricted pattern. Zac1 stimulated luciferase reporter constructs driven by ANF, BNP, or alphaMHC promoters. Strong functional synergy was seen between Zac1 and Nkx2-5 on the ANF promoter, which carries adjacent Zac1 and Nkx2-5 DNA-binding sites. Zac1 directly associated with the ANF promoter in vitro and in vivo, and Zac1 and Nkx2-5 physically associated through zinc fingers 5 and 6 in Zac1, and the homeodomain in Nkx2-5. Zac1 is a maternally imprinted gene and is the first such gene found to be involved in heart development. Homozygous and paternally derived heterozygous mice carrying an interruption in the Zac1 locus showed decreased levels of chamber and myofilament genes, increased apoptotic cells, partially penetrant lethality and morphological defects including atrial and ventricular septal defects, and thin ventricular walls. CONCLUSIONS: Zac1 plays an essential role in the cardiac gene regulatory network. Our data provide a potential mechanistic link between Zac1 in cardiogenesis and congenital heart disease manifestations associated with genetic or epigenetic defects in an imprinted gene network.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression