|  Help  |  About  |  Contact Us

Protein Domain : Serine/threonine-protein kinase, Sbk1

Primary Identifier  IPR016234 Type  Family
Short Name  Ser/Thr_kinase_Sbk1
description  Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity []:Serine/threonine-protein kinasesTyrosine-protein kinasesDual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)Protein kinase function is evolutionarily conserved from Escherichia coli to human []. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation []. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [].This entry represents serine/threonine-protein kinases (), such as Sbk1. Sbk1 may be involved in signal-transduction pathways related to the control of brain development, such as the control of neuronal proliferation or migration in the brain of embryos.

0 Child Features

0 Parent Features

2 Protein Domain Regions