|  Help  |  About  |  Contact Us

Publication : Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney.

First Author  Yamada Y Year  1992
Journal  Proc Natl Acad Sci U S A Volume  89
Issue  1 Pages  251-5
PubMed ID  1346068 Mgi Jnum  J:2346
Mgi Id  MGI:50870 Doi  10.1073/pnas.89.1.251
Citation  Yamada Y, et al. (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A 89(1):251-5
abstractText  Somatostatin is a tetradecapeptide that is widely distributed in the body. It acts on multiple organs including brain, pituitary, gut, exocrine and endocrine pancreas, adrenals, thyroid, and kidneys to inhibit release of many hormones and other secretory proteins. In addition, it functions as a neuropeptide affecting the electrical activity of neurons. Somatostatin exerts its biological effects by binding to specific high-affinity receptors, which appear in many cases to be coupled to GTP-binding proteins. Here we report the cloning, functional expression, and tissue distribution of two different somatostatin receptors (SSTRs). SSTR1 and SSTR2 contain 391 and 369 amino acids, respectively, and are members of the superfamily of receptors having seven transmembrane segments. There is 46% identity and 70% similarity between the amino acid sequences of SSTR1 and SSTR2. Stably transfected Chinese hamster ovary cells expressing SSTR1 or SSTR2 exhibit specific somatostatin binding, with an apparently higher affinity for somatostatin-14 than somatostatin-28, and NH2-terminally extended form of somatostatin-14. RNA blotting studies show that SSTR1 and SSTR2 are expressed at highest levels in jejunum and stomach and in cerebrum and kidney, respectively. A SSTR1 probe hybridized to multiple DNA fragments in EcoRI digests of human and mouse DNA, indicating that SSTR1 and SSTR2 are members of a larger family of somatostatin receptors. Thus, the biological effects of somatostatin are mediated by a family of receptors that are expressed in a tissue-specific manner.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression