|  Help  |  About  |  Contact Us

Publication : Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy.

First Author  Shohet RV Year  2004
Journal  Proc Natl Acad Sci U S A Volume  101
Issue  7 Pages  2088-93
PubMed ID  14764893 Mgi Jnum  J:90390
Mgi Id  MGI:3043467 Doi  10.1073/pnas.0307159101
Citation  Shohet RV, et al. (2004) Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy. Proc Natl Acad Sci U S A 101(7):2088-93
abstractText  Endothelin 1 (ET-1), a potent vasoconstrictor peptide expressed by endothelium, is also produced in the heart in response to a variety of stresses. It induces hypertrophy in cultured cardiac myocytes but only at concentrations far greater than those found in plasma. We tested whether ET-1 generated by cardiac myocytes in vivo is a local signal for cardiac hypertrophy. To avoid the perinatal lethality seen in systemic ET-1-null mice, we used the Cre/loxP system to generate mice with cardiac myocyte-specific disruption of the ET-1 gene. We used the alpha-myosin heavy chain promoter to drive expression of Cre and were able to obtain 75% reduction in ET-1 mRNA in cardiac myocytes isolated from these mice at baseline and after stimulation, in vivo, for 24 h with tri-iodothyronine (T3). Necropsy measurements of cardiac mass indexed for body weight showed a 57% reduction in cardiac hypertrophy in response to 16 days of exogenous T3 in mice homozygous for the disrupted ET-1 allele compared to siblings with an intact ET-1 gene. Moreover, in vivo MRI showed only a 3% increase in left ventricular mass indexed for body weight in mice with the disrupted allele after 3 weeks of T3 treatment versus a 27% increase in mice with an intact ET-1 gene. A reduced hypertrophic response was confirmed by planimetry of cardiac myocytes. We conclude that ET-1, produced locally by cardiac myocytes, and acting in a paracrine/autocrine manner, is an important signal for myocardial hypertrophy that facilitates the response to thyroid hormone.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression