|  Help  |  About  |  Contact Us

Publication : TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II.

First Author  Gardner S Year  2011
Journal  Mol Endocrinol Volume  25
Issue  1 Pages  128-37
PubMed ID  21106882 Mgi Jnum  J:182900
Mgi Id  MGI:5317062 Doi  10.1210/me.2010-0292
Citation  Gardner S, et al. (2011) TGF-beta inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II. Mol Endocrinol 25(1):128-37
abstractText  Skeletal muscle differentiation and regeneration are regulated by interactions between exogenous hormone- and growth factor-activated signaling cascades and endogenous muscle-specific transcriptional programs. IGF-I and IGF-II can promote muscle differentiation in vitro and can enhance muscle maintenance and repair in vivo. In contrast, members of the TGF-beta superfamily prominently inhibit muscle differentiation and regeneration. In this study, we have evaluated functional interactions between IGF- and TGF-beta-regulated signaling pathways during skeletal muscle differentiation. In the mouse C2 muscle cell line and in human myoblasts in primary culture, addition of TGF-beta1 blocked differentiation in a dose-dependent way, inhibited expression of muscle-specific mRNAs and proteins, and impaired myotube formation. TGF-beta1 also diminished stimulation of IGF-II gene expression in myoblasts, decreased IGF-II secretion, and reduced IGF-I receptor activation. To test the hypothesis that TGF-beta1 prevents muscle differentiation primarily by blocking IGF-II production, we examined effects of IGF analogues on TGF-beta actions in myoblasts. Although both IGF-I and IGF-II restored muscle gene and protein expression, and stimulated myotube formation in the presence of TGF-beta1, they did not reduce TGF-beta1-stimulated signaling, as measured by no decline in phosphorylation of SMA and mothers against decapentaplegic homolog (Smad)3, or in induction of TGF-beta-activated target genes, including a Smad-dependent promoter-reporter plasmid. Our results demonstrate that TGF-beta disrupts an IGF-II-stimulated autocrine amplification cascade that is necessary for muscle differentiation in vitro. Because this inhibitory pathway can be overcome by exogenous IGFs, our observations point toward potential strategies to counteract disorders that reduce muscle mass and strength.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression