|  Help  |  About  |  Contact Us

Publication : Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington's disease mice: exclusion of proteasome activator REGgamma as a therapeutic target.

First Author  Bett JS Year  2006
Journal  Hum Mol Genet Volume  15
Issue  1 Pages  33-44
PubMed ID  16311253 Mgi Jnum  J:306749
Mgi Id  MGI:6708055 Doi  10.1093/hmg/ddi423
Citation  Bett JS, et al. (2006) Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington's disease mice: exclusion of proteasome activator REGgamma as a therapeutic target. Hum Mol Genet 15(1):33-44
abstractText  Huntington's disease (HD) is one of a group of neurodegenerative disorders caused by the pathological expansion of a glutamine tract. A hallmark of these so-called polyglutamine diseases is the presence of ubiquitylated inclusion bodies, which sequester various components of the 19S and 20S proteasomes. In addition, the ubiquitin-proteasome system (UPS) has been shown to be severely impaired in vitro in cells overexpressing mutant huntingtin. Thus, because of its fundamental housekeeping function, impairment of the UPS in neurons could contribute to neurotoxicity. We have recently proposed that the proteasome activator REGgamma could contribute to UPS impairment in polyglutamine diseases by suppressing the proteasomal catalytic sites responsible for cleaving Gln-Gln bonds. Capping of proteasomes with REGgamma could therefore contribute to a potential 'clogging' of the proteasome by pathogenic polyglutamines. We show here that genetic reduction of REGgamma has no effect on the well-defined neurological phenotype of R6/2 HD mice and does not affect inclusion body formation in the R6/2 brain. Surprisingly, we observe increased proteasomal 'chymotrypsin-like' activity in 13-week-old R6/2 brains relative to non-R6/2, irrespective of REGgamma levels. However, assays of 26S proteasome activity in mouse brain extracts reveal no difference in proteolytic activity regardless of R6/2 or REGgamma genotype. These findings suggest that REGgamma is not a viable therapeutic target in polyglutamine disease and that overall proteasome function is not impaired by trapped mutant polyglutamine in R6/2 mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression