|  Help  |  About  |  Contact Us

Publication : Identification of a mouse short-chain dehydrogenase/reductase gene, retinol dehydrogenase-similar. Function of non-catalytic amino acid residues in enzyme activity.

First Author  Song MS Year  2003
Journal  J Biol Chem Volume  278
Issue  41 Pages  40079-87
PubMed ID  12855677 Mgi Jnum  J:85943
Mgi Id  MGI:2677584 Doi  10.1074/jbc.M304910200
Citation  Song MS, et al. (2003) Identification of a mouse short-chain dehydrogenase/reductase gene, retinol dehydrogenase-similar. Function of non-catalytic amino acid residues in enzyme activity. J Biol Chem 278(41):40079-87
abstractText  We report a mouse short-chain dehydrogenase/reductase (SDR), retinol dehydrogenase-similar (RDH-S), with intense mRNA expression in liver and kidney. The RDH-S gene localizes to chromosome 10D3 with the SDR subfamily that catalyzes metabolism of retinoids and 3 alpha-hydroxysteroids. RDH-S has no activity with prototypical retinoid/steroid substrates, despite 92% amino acid similarity to mouse RDH1. This afforded the opportunity to analyze for functions of non-catalytic SDR residues. We produced RDH-S Delta 3 by mutating RDH-S to remove an 'additional' Asn residue relative to RDH1 in its center, to convert three residues into RDH1 residues (L121P, S122N, and Q123E), and to substitute RDH1 sequence G208FKTCVTSSD for RDH-S sequence F208-FLTGMASSA. RDH-S Delta 3 catalyzed all-trans-retinol and 5 alpha-androstane-3 alpha,17 alpha-diol (3 alpha-adiol) metabolism 60-70% as efficiently (Vm/Km) as RDH1. Conversely, substituting RDH-S sequence F208FLTGMASSA into RDH1 produced a chimera (viz. C3) that was inactive with all-trans-retinol, but was 4-fold more efficient with 3 alpha-adiol. A single RDH1 mutation in the C3 region (K210L) reduced efficiency for all-trans-retinol by >1250-fold. In contrast, the C3 area mutation C212G enhanced efficiency with all-trans-retinol by approximately 2.4-fold. This represents a >6000-fold difference in catalytic efficiency for two enzymes that differ by a single non-catalytic amino acid residue. Another chimera (viz. C5) retained efficiency with all-trans-retinol, but was not saturated and was weakly active with 3 alpha-adiol, stemming from three residue differences (K224Q, K229Q, and A230T). The residues studied contribute to the substrate-binding pocket: molecular modeling indicated that they would affect orientation of substrates with the catalytic residues. These data report a new member of the SDR gene family, provide insight into the function of non-catalytic SDR residues, and illustrate that limited changes in the multifunctional SDR yield major alterations in substrate specificity and/or catalytic efficiency.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

8 Expression

Trail: Publication