|  Help  |  About  |  Contact Us

Publication : Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation.

First Author  Rogowski K Year  2009
Journal  Cell Volume  137
Issue  6 Pages  1076-87
PubMed ID  19524510 Mgi Jnum  J:150280
Mgi Id  MGI:3850271 Doi  10.1016/j.cell.2009.05.020
Citation  Rogowski K, et al. (2009) Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137(6):1076-87
abstractText  Polyglycylation is a posttranslational modification that generates glycine side chains on proteins. Here we identify a family of evolutionarily conserved glycine ligases that modify tubulin using different enzymatic mechanisms. In mammals, two distinct enzyme types catalyze the initiation and elongation steps of polyglycylation, whereas Drosophila glycylases are bifunctional. We further show that the human elongating glycylase has lost enzymatic activity due to two amino acid changes, suggesting that the functions of protein glycylation could be sufficiently fulfilled by monoglycylation. Depletion of a glycylase in Drosophila using RNA interference results in adult flies with strongly decreased total glycylation levels and male sterility associated with defects in sperm individualization and axonemal maintenance. A more severe RNAi depletion is lethal at early developmental stages, indicating that protein glycylation is essential. Together with the observation that multiple proteins are glycylated, our functional data point towards a general role of glycylation in protein functions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

33 Bio Entities

Trail: Publication

0 Expression