|  Help  |  About  |  Contact Us

Publication : Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis.

First Author  Reinehr R Year  2006
Journal  J Biol Chem Volume  281
Issue  32 Pages  23150-66
PubMed ID  16772302 Mgi Jnum  J:116490
Mgi Id  MGI:3694375 Doi  10.1074/jbc.M601451200
Citation  Reinehr R, et al. (2006) Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J Biol Chem 281(32):23150-66
abstractText  Hyperosmotic exposure of rat hepatocytes induced a rapid oxidative-stress(ROS) response as an upstream signal for proapoptotic CD95 activation. This study shows that hyperosmotic ROS formation involves a rapid ceramide- and protein kinase Czeta (PKCzeta)-dependent serine phosphorylation of p47phox and subsequent activation of NADPH oxidase isoforms. Hyperosmotic p47phox phosphorylation and ROS formation were sensitive to inhibition of sphingomyelinases and were strongly blunted after knockdown of acidic sphingomyelinase (ASM) or of p47phox protein. Hyperosmolarity induced a rapid bafilomycin- and 4,4 '-diisothiocyanostilbene-2,2 '-disulfonic acid disodium salt (DIDS)-sensitive acidification of a vesicular compartment, which was accessible to endocytosed fluorescein isothiocyanate-dextran and colocalized with ASM, PKCzeta, and the NADPH oxidase isoform Nox 2 (gp91phox). Bafilomycin and DIDS prevented the hyperosmolarity-induced increase in ceramide formation, p47phox phosphorylation, and ROS formation. As shown recently (Reinehr, R., Becker, S., Hongen, A., and Haussinger, D. (2004) J. Biol. Chem. 279, 23977-23987), hyperosmolarity induced a Yes-dependent activation of JNK and the epidermal growth factor receptor (EGFR), followed by EGFR-CD95 association, EGFR-catalyzed CD95-tyrosine phosphorylation, and translocation of the EGFR-CD95 complex to the plasma membrane, where formation of the deathinducing signaling complex occurs. These proapoptotic responses were not only sensitive to inhibitors of sphingomyelinase, PKCzeta, or NADPH oxidases but also to ASM knockdown, bafilomycin, and DIDS, i.e. maneuvers largely preventing hyperosmolarity-induced endosomal acidification and/or ceramide formation. In hepatocytes from p47phox knock-out mice, hyperosmolarity failed to activate the CD95 system. The data suggest that hyperosmolarity induces endosomal acidification as an important upstream event for CD95 activation through stimulation of ASM-dependent ceramide formation and activation of NADPH oxidase isoforms.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression