|  Help  |  About  |  Contact Us

Publication : Matrix metalloproteinase-2 or -9 deletions protect against hemorrhagic transformation during early stage of cerebral ischemia and reperfusion.

First Author  Suofu Y Year  2012
Journal  Neuroscience Volume  212
Pages  180-9 PubMed ID  22521821
Mgi Jnum  J:184676 Mgi Id  MGI:5426070
Doi  10.1016/j.neuroscience.2012.03.036 Citation  Suofu Y, et al. (2012) Matrix metalloproteinase-2 or -9 deletions protect against hemorrhagic transformation during early stage of cerebral ischemia and reperfusion. Neuroscience 212:180-9
abstractText  MMP-9 deficiency protected against photochemical thrombosis-induced brain hemorrhagic transformation (HT), but it did not protect against tissue plasminogen activator-induced brain hemorrhage. The roles of MMP-2 and/or MMP-9 knockout (KO) in mechanical reperfusion induced HT after ischemia have not been investigated. Here we assessed the effects of MMP-2 KO, MMP-9 KO and MMP-2/9 double KO (dKO) in protecting against mechanical reperfusion induced HT and other brain injuries after the early stages of cerebral ischemia in mice of the same genetic background. Middle cerebral artery occlusion (MCAO) was performed in mice. Reperfusion was started at 1 or 1.5h after onset of MCAO. All mice were sacrificed 8h after MCAO. We found that both pro- and active MMP-2 and MMP-9 levels were significantly elevated in the early ischemic brain. After the early stages of ischemia and reperfusion, the hemorrhagic incidence was reduced in the cortex of MMP-2 KO mice (p<0.05 vs. WT). The hemorrhagic volume was significantly decreased in the cortexes of MMP-2 and/or -9 knockout mice (MMP-9 KO vs. WT: p<0.01, MMP-2 KO and dKO vs. WT: p<0.001). In the basal ganglia, MMP-2 KO and MMP-2/9 dKO mice displayed a remarkable decrease in hemorrhagic volume (p<0.01 or 0.05 vs. WT), but MMP-9 KOs did not protect against hemorrhage. MMP-2 and/or -9 knockout mice displayed significantly decreased infarction volume in both the cortex and striatum, in addition to improved neurological function (p<0.001 vs. WT). The results suggested that MMP-2 deficiency and MMP-2 and MMP-9 double deficiency were more protective than MMP-9 deficiency against HT after the early stages of ischemia and reperfusion. These studies increase our understanding of MMP-2 and MMP-9 in HT development and will help to selectively target MMPs to protect the post-ischemic brain from injury and HT.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression