|  Help  |  About  |  Contact Us

Publication : Chlamydia infection induces ICOS ligand-expressing and IL-10-producing dendritic cells that can inhibit airway inflammation and mucus overproduction elicited by allergen challenge in BALB/c mice.

First Author  Han X Year  2006
Journal  J Immunol Volume  176
Issue  9 Pages  5232-9
PubMed ID  16621988 Mgi Jnum  J:131630
Mgi Id  MGI:3774080 Doi  10.4049/jimmunol.176.9.5232
Citation  Han X, et al. (2006) Chlamydia infection induces ICOS ligand-expressing and IL-10-producing dendritic cells that can inhibit airway inflammation and mucus overproduction elicited by allergen challenge in BALB/c mice. J Immunol 176(9):5232-9
abstractText  Our previous study has shown that the adoptive transfer of dendritic cells (DCs) freshly isolated from Chlamydia-infected mice (iIDCs), unlike those from control naive mice (iNDCs), can inhibit systemic and cutaneous eosinophilia induced by OVA exposure. In the present study, we examined the mechanism by which iIDC inhibits allergen-specific Th2 cell differentiation in vitro and in vivo. The study revealed that iIDCs exhibited higher surface expression of CD8alpha and the ICOS ligand (ICOS-L), as well as higher IL-10 and IL-12 production than iNDCs. In vitro DC:CD4(+) T cell coculture experiments showed that iIDCs could inhibit allergen-specific Th2 cell differentiation and that the inhibitory effect could be abolished by the blockage of IL-10 or IL-12 activity. More interestingly, the coblockade of IL-10 and the ICOS-L showed synergistic effect in enhancing allergen-driven Th2 cytokine production. Furthermore, adoptive transfer of iIDCs, but not iNDCs, to OVA sensitized mice significantly inhibited airway eosinophilia and mucus overproduction following intranasal challenge with OVA. Overall, the data demonstrate a critical role played by ICOS-L-expressing and IL-10-producing DCs from Chlamydia-infected mice in the infection-mediated inhibition of allergic responses.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression