|  Help  |  About  |  Contact Us

Publication : Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks.

First Author  Jing R Year  2007
Journal  J Cell Sci Volume  120
Issue  Pt 7 Pages  1267-77
PubMed ID  17356066 Mgi Jnum  J:122062
Mgi Id  MGI:3713044 Doi  10.1242/jcs.03423
Citation  Jing R, et al. (2007) Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J Cell Sci 120(Pt 7):1267-77
abstractText  Immature astrocytes and astrocytoma cells contain synemin and three other intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), vimentin and nestin. Here, we show that, after neurotrauma, reactive astrocytes produce synemin and thus propose synemin as a new marker of reactive astrocytes. Comparison of synemin mRNA and protein levels in brain tissues and astrocyte cultures from wild-type, Vim(-)(/)(-) and Gfap(-)(/)(-)Vim(-)(/)(-) mice showed that in the absence of vimentin, synemin protein was undetectable although synemin mRNA was present at wild-type levels. By contrast, in Gfap(-)(/)(-) astrocytes, synemin protein and mRNA levels, as well as synemin incorporation into vimentin IFs, were unaltered. Biochemical assays with purified proteins suggested that synemin interacts with GFAP IFs like an IF-associated protein rather than like a polymerization partner, whereas the opposite was true for synemin interaction with vimentin. In transfection experiments, synemin did not incorporate into normal, filamentous GFAP networks, but integrated into vimentin and GFAP heteropolymeric networks. Thus, alongside GFAP, vimentin and nestin, reactive astrocytes contain synemin, whose accumulation is suppressed post-transcriptionally in the absence of a polymerization partner. In astrocytes, this partner is vimentin and not GFAP, which implies a functional difference between these two type III IF proteins.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression