|  Help  |  About  |  Contact Us

Protein Domain : Peptidase C58, Yersinia/Haemophilus virulence surface antigen

Primary Identifier  IPR003951 Type  Family
Short Name  Peptidase_C58
description  This group of cysteine peptidases correspond to MEROPS peptidase family C58 (clan CA). They are found in bacteria that include plant pathogens (Pseudomonas syringae), root nodule bacteria, and intracellular pathogens (e.g. Yersinia pestis, Haemophilus ducreyi, Pasteurella multocida, Chlamydia trachomatis) of animal hosts. The peptidase domain features a catalytic triad of Cys, His, and Asp. Sequences can be extremely divergent outside of a few well-conserved motifs. YopT, a virulence effector protein of Y. pestis, cleaves and releases host cell Rho GTPases from the membrane, thereby disrupting the actin cytoskeleton. Members of the family from pathogenic bacteria are likely to be pathogenesis factors [].Secretion of virulence factors in Gram-negative bacteria involves transportation of the protein across two membranes to reach the cell exterior. There have been four secretion systems described in animal enteropathogens such as Salmonella and Yersinia, with further sequence homologies in plant pathogens like Ralstonia and Erwinia []. The type III secretion system is of great interest, as it is used to transport virulence factors from the pathogen directly into the host cell and is only triggered when the bacterium comes into close contact with the host. The protein subunits of the system are very similar to those of bacterial flagellar biosynthesis. However, while the latter forms a ring structure to allow secretion of flagellin and is an integral part of the flagella itself, type III subunits in the outer membrane translocate secreted proteins through a channel-like structure [].Exotoxins secreted by the type III system do not possess a secretion signal, and are considered unique because of this []. Y. pestis secretes such a protein, YopT []. YopT is injected into the host cell upon contact, and is therefore considered to be a virulence factor. Haemophilus spp. express a similar toxin on their surface, a 76kDa antigen [].A cysteine peptidase is a proteolytic enzyme that hydrolyses a peptide bond using the thiol group of a cysteine residue as a nucleophile. Hydrolysis involves usually a catalytic triad consisting of the thiol group of the cysteine, the imidazolium ring of a histidine, and a third residue, usually asparagine or aspartic acid, to orientate and activate the imidazolium ring. In only one family of cysteine peptidases, is the role of the general base assigned to a residue other than a histidine: in peptidases from family C89 (acid ceramidase) an arginine is the general base. Cysteine peptidases can be grouped into fourteen different clans, with members of each clan possessing a tertiary fold unique to the clan. Four clans of cysteine peptidases share structural similarities with serine and threonine peptidases and asparagine lyases. From sequence similarities, cysteine peptidases can be clustered into over 80 different families []. Clans CF, CM, CN, CO, CP and PD contain only one family.Cysteine peptidases are often active at acidic pH and are therefore confined to acidic environments, such as the animal lysosome or plant vacuole. Cysteine peptidases can be endopeptidases, aminopeptidases, carboxypeptidases, dipeptidyl-peptidases or omega-peptidases. They are inhibited by thiol chelators such as iodoacetate, iodoacetic acid, N-ethylmaleimide or p-chloromercuribenzoate.Clan CA includes proteins with a papain-like fold. There is a catalytic triad which occurs in the order: Cys/His/Asn (or Asp). A fourth residue, usually Gln, is important for stabilising the acyl intermediate that forms during catalysis, and this precedes the active site Cys. The fold consists of two subdomains with the active site between them. One subdomain consists of a bundle of helices, with the catalytic Cys at the end of one of them, and the other subdomain is a β-barrel with the active site His and Asn (or Asp). There are over thirty families in the clan, and tertiary structures have been solved for members of most of these. Peptidases in clan CA are usually sensitive to the small molecule inhibitor E64, which is ineffective against peptidases from other clans of cysteine peptidases [].Clan CD includes proteins with a caspase-like fold. Proteins in the clan have an α/β/α sandwich structure. There is a catalytic dyad which occurs in the order His/Cys. The active site His occurs in a His-Gly motif and the active site Cys occurs in an Ala-Cys motif; both motifs are preceded by a block of hydrophobic residues []. Specificity is predominantly directed towards residuesthat occupy the S1 binding pocket, so that caspases cleave aspartyl bonds, legumains cleave asparaginyl bonds, and gingipains cleave lysyl or arginyl bonds.Clan CE includes proteins with an adenain-like fold. The fold consists of two subdomains with the active site between them. One domain is a bundle of helices, and the other a β-barrell. The subdomains are in the opposite order to those found in peptidases from clan CA, and this is reflected in the order of active site residues: His/Asn/Gln/Cys. This has prompted speculation that proteins in clans CA and CE are related, and that members of one clan are derived from a circular permutation of the structure of the other.Clan CL includes proteins with a sortase B-like fold. Peptidases in the clan hydrolyse and transfer bacterial cell wall peptides. The fold shows a closed β-barrel decorated with helices with the active site at one end of the barrel []. The active site consists of a His/Cys catalytic dyad.Cysteine peptidases with a chymotrypsin-like fold are included in clan PA, which also includes serine peptidases. Cysteine peptidases that are N-terminal nucleophile hydrolases are included in clan PB. Cysteine peptidases with a tertiary structure similar to that of the serine-type aspartyl dipeptidase are included in clan PC. Cysteine peptidases with an intein-like fold are included in clan PD, which also includes asparagine lyases.

0 Child Features

0 Parent Features

0 Protein Domain Regions