|  Help  |  About  |  Contact Us

Publication : The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases.

First Author  Garbers C Year  2014
Journal  Biochim Biophys Acta Volume  1842
Issue  9 Pages  1485-94
PubMed ID  24878322 Mgi Jnum  J:217929
Mgi Id  MGI:5616063 Doi  10.1016/j.bbadis.2014.05.018
Citation  Garbers C, et al. (2014) The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim Biophys Acta 1842(9):1485-94
abstractText  The pleiotropic activities of Interleukin (IL-)6 are controlled by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The coding single nucleotide polymorphism (SNP) rs2228145 of the Interleukin 6 receptor (IL-6R Asp358Ala variant) is associated with a 2-fold increase in soluble IL-6R (sIL-6R) serum levels resulting in reduced IL-6-induced C-reactive protein (CRP) production and a reduced risk for coronary heart disease. It was suggested that the increased sIL-6R level leads to decreased IL-6 classic or increased IL-6 trans-signaling. Irrespective of the functional outcome of increased sIL-6R serum level, it is still under debate, whether the increased sIL-6R serum levels emerged from differential splicing or ectodomain shedding. Here we show that increased proteolytic ectodomain shedding mediated by the A Disintegrin and metalloproteinase domain (ADAM) proteases ADAM10 and ADAM17 caused increased sIL-6R serum level in vitro as well as in healthy volunteers homozygous for the IL-6R Asp358Ala allele. Differential splicing of the IL-6R appears to have only a minor effect on sIL-6R level. Increased ectodomain shedding resulted in reduced cell-surface expression of the IL-6R Asp358Ala variant compared to the common IL-6R variant. In conclusion, increased IL-6R ectodomain shedding is a mechanistic explanation for the increased serum IL-6R levels found in persons homozygous for the rs2228145 IL-6R Asp358Ala variant.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression