|  Help  |  About  |  Contact Us

Publication : Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1.

First Author  Xi Q Year  2007
Journal  Invest Ophthalmol Vis Sci Volume  48
Issue  6 Pages  2837-44
PubMed ID  17525220 Mgi Jnum  J:123276
Mgi Id  MGI:3717940 Doi  10.1167/iovs.06-0059
Citation  Xi Q, et al. (2007) Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci 48(6):2837-44
abstractText  PURPOSE: Tubby-like proteins (TULPs) are a family of four proteins, two of which have been linked to neurosensory disease phenotypes. TULP1 is a photoreceptor-specific protein that is mutated in retinitis pigmentosa, an inherited retinal disease characterized by the degeneration of rod and cone photoreceptor cells. To investigate the function of TULP1 in maintaining the health of photoreceptors, the authors sought the identification of interacting proteins. METHODS: Immunoprecipitation from retinal lysates, followed by liquid chromatography tandem mass spectrometry and in vitro binding assays, were used to identify TULP1 binding partners. RT-PCR was performed on total RNA from wild-type mouse retina to identify the Dynamin-1 isoform expressed in the retina. Immunocytochemistry was used to determine the localization of TULP1 and Dynamin-1 in photoreceptor cells. Electroretinography (ERG) and light microscopy were used to phenotype tulp1-/- mice at a young age. RESULTS: Immunoprecipitation from retinal lysate identified Dynamin-1 as a possible TULP1 binding partner. GST pull-down assays further supported an interaction between TULP1 and Dynamin-1. In photoreceptor cells, Dynamin-1 and TULP1 colocalized primarily to the outer plexiform layer, where photoreceptor terminals synapse on second-order neurons and, to a lesser extent, to the inner segments, where polarized protein translocation occurs. ERG analyses in young tulp1-/- mice indicated a decreased b-wave at ages when the retina retained a full complement of photoreceptor cells. CONCLUSIONS: These data indicated that TULP1 interacts with Dynamin-1 and suggested that TULP1 is involved in the vesicular trafficking of photoreceptor proteins, both at the nerve terminal during synaptic transmission and at the inner segment during protein translocation to the outer segment. These results also raised the possibility that normal synaptic function requires TULP1, and they motivate a closer look at synaptic architecture in the developing tulp1-/- retina.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression