|  Help  |  About  |  Contact Us

Publication : FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors.

First Author  Abdullah JM Year  2001
Journal  Blood Cells Mol Dis Volume  27
Issue  1 Pages  320-33
PubMed ID  11358394 Mgi Jnum  J:74129
Mgi Id  MGI:2157659 Doi  10.1006/bcmd.2001.0390
Citation  Abdullah JM, et al. (2001) FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors. Blood Cells Mol Dis 27(1):320-33
abstractText  Through differential screening of mouse hematopoietic stem cell (HSC) and progenitor subtracted cDNA libraries we have identified a HSC-specific transcript that represents a novel RING finger gene, named FLRF (fetal liver ring finger). FLRF represent a novel evolutionarily highly conserved RING finger gene, present in Drosophila, zebrafish, Xenopus, mouse, and humans. Full-length cDNA clones for mouse and human gene encode an identical protein of 317 amino acids with a C3HC4 RING finger domain at the amino terminus. During embryonic hematopoiesis FLRF is abundantly transcribed in mouse fetal liver HSC (Sca-1+c-kit+AA4.1+Lin- cells), but is not expressed in progenitors (AA4.1-). In adult mice FLRF is not transcribed in a highly enriched population of bone marrow HSC (Rh-123lowSca-1+c-kit+Lin- cells). Its expression is upregulated in a more heterogeneous population of bone marrow HSC (Lin-Sca-1+ cells), downregulated as they differentiate into progenitors (Lin-Sca-1- cells), and upregulated as progenitors differentiate into mature lymphoid and myeloid cell types. The human FLRF gene that spans a region of at least 12 kb and consists of eight exons was localized to chromosome 12q13, a region with frequent chromosome aberrations associated with multiple cases of acute myeloid leukemia and non-Hodgkin's lymphoma. The analysis of the genomic sequence upstream of the first exon in the mouse and human FLRF gene has revealed that both putative promoters contain multiple putative binding sites for several hematopoietic (GATA-1, GATA-2, GATA-3, Ikaros, SCL/Tal-1, AML1, MZF-1, and Lmo2) and other transcription factors, suggesting that mouse and human FLRF expression could be regulated in a developmental and cell-specific manner during hematopoiesis. Evolutionary conservation and differential expression in fetal and adult HSC and progenitors suggest that the FLRF gene could play an important role in HSC/progenitor cell lineage commitment and differentiation and could be involved in the etiology of hematological malignancies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression