|  Help  |  About  |  Contact Us

Publication : WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma.

First Author  Stec I Year  1998
Journal  Hum Mol Genet Volume  7
Issue  7 Pages  1071-82
PubMed ID  9618163 Mgi Jnum  J:48436
Mgi Id  MGI:1270001 Doi  10.1093/hmg/7.7.1071
Citation  Stec I, et al. (1998) WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma [published erratum appears in HumMol Genet 1998 Sep;7(9):1527]. Hum Mol Genet 7(7):1071-82
abstractText  Wolf-Hirschhorn syndrome (WHS) is a malformation syndrome associated with a hemizygous deletion of the distal short arm of chromosome 4 (4p16.3). The smallest region of overlap between WHS patients, the WHS critical region, has been confined to 165 kb, of which the complete sequence is known. We have identified and studied a 90 kb gene, designated as WHSC1 , mapping to the 165 kb WHS critical region. This 25 exon gene is expressed ubiquitously in early development and undergoes complex alternative splicing and differential polyadenylation. It encodes a 136 kDa protein containing four domains present in other developmental proteins: a PWWP domain, an HMG box, a SET domain also found in the Drosophila dysmorphy gene ash -encoded protein, and a PHD-type zinc finger. It is expressed preferentially in rapidly growing embryonic tissues, in a pattern corresponding to affected organs in WHS patients. The nature of the protein motifs, the expression pattern and its mapping to the critical region led us to propose WHSC1 as a good candidate gene to be responsible for many of the phenotypic features of WHS. Finally, as a serendipitous finding, of the t(4;14) (p16.3;q32.3) translocations recently described in multiple myelomas, at least three breakpoints merge the IgH and WHSC1 genes, potentially causing fusion proteins replacing WHSC1 exons 1-4 by the IgH 5'-VDJ moiety.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

21 Expression

Trail: Publication