|  Help  |  About  |  Contact Us

Publication : Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade.

First Author  Woodman SE Year  2002
Journal  J Biol Chem Volume  277
Issue  41 Pages  38988-97
PubMed ID  12138167 Mgi Jnum  J:79453
Mgi Id  MGI:2388238 Doi  10.1074/jbc.M205511200
Citation  Woodman SE, et al. (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277(41):38988-97
abstractText  A growing body of evidence suggests that muscle cell caveolae may function as specialized membrane micro-domains in which the dystrophin-glycoprotein complex and cellular signaling molecules reside. Caveolin-3 (Cav-3) is the only caveolin family member expressed in striated muscle cell types (cardiac and skeletal). Interestingly, skeletal muscle fibers from Cav-3 (-/-) knock-out mice show a number of myopathic changes, consistent with a mild-to-moderate muscular dystrophy phenotype. However, it remains unknown whether a loss of Cav-3 affects the phenotypic behavior cardiac myocytes in vivo. Here, we present a detailed characterization of the hearts of Cav-3 knock-out mice. We show that these mice develop a progressive cardiomyopathic phenotype. At four months of age, Cav-3 knock-out hearts display significant hypertrophy, dilation, and reduced fractional shortening, as revealed by gated cardiac MRI and transthoracic echocardiography. Histological analysis reveals marked cardiac myocyte hypertrophy, with accompanying cellular infiltrates and progressive interstitial/peri-vascular fibrosis. Interestingly, loss of Cav-3 expression in the heart does not change the expression or the membrane association of the dystrophin-glycoprotein (DG) complex. However, a marker of the DG complex, alpha-sarcoglycan, was specifically excluded from lipid raft domains in the absence of Cav-3. Because activation of the Ras-p42/44 MAPK pathway in cardiac myocytes can drive cardiac hypertrophy, we next assessed the activation state of this pathway using a phospho-specific antibody probe. We show that p42/44 MAPK (ERK1/2) is hyperactivated in hearts derived from Cav-3 knock-out mice. These results are consistent with previous in vitro data demonstrating that caveolins may function as negative regulators of the p42/44 MAPK cascade. Taken together, our data argue that loss of Cav-3 expression is sufficient to induce a molecular program leading to cardiac myocyte hypertrophy and cardiomyopathy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression