|  Help  |  About  |  Contact Us

Publication : DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development.

First Author  Quiles-Jiménez A Year  2021
Journal  Atherosclerosis Volume  324
Pages  123-132 PubMed ID  33714552
Mgi Jnum  J:322331 Mgi Id  MGI:6740637
Doi  10.1016/j.atherosclerosis.2021.02.023 Citation  Quiles-Jimenez A, et al. (2021) DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development. Atherosclerosis 324:123-132
abstractText  BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe(-/-) mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression