|  Help  |  About  |  Contact Us

Publication : A cross-modal genetic framework for the development and plasticity of sensory pathways.

First Author  Frangeul L Year  2016
Journal  Nature Volume  538
Issue  7623 Pages  96-98
PubMed ID  27669022 Mgi Jnum  J:238813
Mgi Id  MGI:5824187 Doi  10.1038/nature19770
Citation  Frangeul L, et al. (2016) A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature 538(7623):96-98
abstractText  Modality-specific sensory inputs from individual sense organs are processed in parallel in distinct areas of the neocortex. For each sensory modality, input follows a cortico-thalamo-cortical loop in which a 'first-order' exteroceptive thalamic nucleus sends peripheral input to the primary sensory cortex, which projects back to a 'higher order' thalamic nucleus that targets a secondary sensory cortex. This conserved circuit motif raises the possibility that shared genetic programs exist across sensory modalities. Here we report that, despite their association with distinct sensory modalities, first-order nuclei in mice are genetically homologous across somatosensory, visual, and auditory pathways, as are higher order nuclei. We further reveal peripheral input-dependent control over the transcriptional identity and connectivity of first-order nuclei by showing that input ablation leads to induction of higher-order-type transcriptional programs and rewiring of higher-order-directed descending cortical input to deprived first-order nuclei. These findings uncover an input-dependent genetic logic for the design and plasticity of sensory pathways, in which conserved developmental programs lead to conserved circuit motifs across sensory modalities.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression