|  Help  |  About  |  Contact Us

Publication : Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells.

First Author  Fredenburgh LE Year  2008
Journal  Circulation Volume  117
Issue  16 Pages  2114-22
PubMed ID  18391113 Mgi Jnum  J:155091
Mgi Id  MGI:4412244 Doi  10.1161/CIRCULATIONAHA.107.716241
Citation  Fredenburgh LE, et al. (2008) Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells. Circulation 117(16):2114-22
abstractText  BACKGROUND: Cyclooxygenase-2 (COX-2) is upregulated in pulmonary artery smooth muscle cells (PASMCs) during hypoxia and may play a protective role in the response of the lung to hypoxia. Selective COX-2 inhibition may have detrimental pulmonary vascular consequences during hypoxia. METHODS AND RESULTS: To investigate the role of COX-2 in the pulmonary vascular response to hypoxia, we subjected wild-type and COX-2-deficient mice to a model of chronic normobaric hypoxia. COX-2-null mice developed severe pulmonary hypertension with exaggerated elevation of right ventricular systolic pressure, significant right ventricular hypertrophy, and striking vascular remodeling after hypoxia. Pulmonary vascular remodeling in COX-2-deficient mice was characterized by PASMC hypertrophy but not increased proliferation. Furthermore, COX-2-deficient mice had significant upregulation of the endothelin-1 receptor (ET(A)) in the lung after hypoxia. Similarly, selective pharmacological inhibition of COX-2 in wild-type mice exacerbated hypoxia-induced pulmonary hypertension and resulted in PASMC hypertrophy and increased ET(A) receptor expression in pulmonary arterioles. The absence of COX-2 in vascular smooth muscle cells during hypoxia in vitro augmented traction forces and enhanced contractility of an extracellular matrix. Treatment of COX-2-deficient PASMCs with iloprost, a prostaglandin I(2) analog, and prostaglandin E(2) abrogated the potent contractile response to hypoxia and restored the wild-type phenotype. CONCLUSIONS: Our findings reveal that hypoxia-induced pulmonary hypertension and vascular remodeling are exacerbated in the absence of COX-2 with enhanced ET(A) receptor expression and increased PASMC hypertrophy. COX-2-deficient PASMCs have a maladaptive response to hypoxia manifested by exaggerated contractility, which may be rescued by either COX-2-derived prostaglandin I(2) or prostaglandin E(2).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression