|  Help  |  About  |  Contact Us

Publication : Corl1, a novel neuronal lineage-specific transcriptional corepressor for the homeodomain transcription factor Lbx1.

First Author  Mizuhara E Year  2005
Journal  J Biol Chem Volume  280
Issue  5 Pages  3645-55
PubMed ID  15528197 Mgi Jnum  J:96986
Mgi Id  MGI:3574120 Doi  10.1074/jbc.M411652200
Citation  Mizuhara E, et al. (2005) Corl1, a novel neuronal lineage-specific transcriptional corepressor for the homeodomain transcription factor Lbx1. J Biol Chem 280(5):3645-55
abstractText  During development, neuronal identity is determined by a combination of numerous transcription factors. However, the mechanisms of synergistic action of these factors in transcriptional regulation and subsequent cell fate specification are largely unknown. In this study, we identified a novel gene, Corl1, encoding a nuclear protein with homology to the Ski oncoprotein. Corl1 was highly selectively expressed in the central nervous system (CNS). In the embryonic CNS, Corl1 was expressed in a certain subset of postmitotic neurons generated posterior to the midbrain-hindbrain border. In the developing spinal cord, Corl1 was selectively expressed in the dorsal horn interneurons where a homeodomain transcription factor, Lbx1, is required for proper specification. Corl1 was localized in a nuclear dot-like structure and interacted with general transcriptional corepressors. In addition, Corl1 showed transcriptional repression activity in the GAL4-fusion system, indicating its involvement in the regulation of transcriptional repression. Furthermore, Corl1 interacted with Lbx1 and cooperatively repressed transcription, suggesting that it acts as a transcriptional corepressor for Lbx1 in regulating cell fate determination in the dorsal spinal cord. Corl1 corepressor activity did not depend on Gro/TLE activity, and Gro/TLE also functioned as a corepressor for Lbx1. Thus, Lbx1 can select two independent partners, Corl1 and Gro/TLE, as corepressors. Identification of a novel transcriptional corepressor with neuronal subtype-restricted expression might provide insights into the mechanisms of cell fate determination in neurons.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

17 Bio Entities

Trail: Publication

0 Expression