|  Help  |  About  |  Contact Us

Publication : Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion.

First Author  Feng J Year  2010
Journal  Proc Natl Acad Sci U S A Volume  107
Issue  41 Pages  17791-6
PubMed ID  20876097 Mgi Jnum  J:165407
Mgi Id  MGI:4837273 Doi  10.1073/pnas.1009078107
Citation  Feng J, et al. (2010) Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci U S A 107(41):17791-6
abstractText  The calcium-sensing receptor (CaR) is the major sensor and regulator of extracellular Ca(2+), whose activity is allosterically regulated by amino acids and pH. Recently, CaR has been identified in the stomach and intestinal tract, where it has been proposed to function in a non-Ca(2+) homeostatic capacity. Luminal nutrients, such as Ca(2+) and amino acids, have been recognized for decades as potent stimulants for gastrin and acid secretion, although the molecular basis for their recognition remains unknown. The expression of CaR on gastrin-secreting G cells in the stomach and their shared activation by Ca(2+), amino acids, and elevated pH suggest that CaR may function as the elusive physiologic sensor regulating gastrin and acid secretion. The genetic and pharmacologic studies presented here comparing CaR-null mice and wild-type littermates support this hypothesis. Gavage of Ca(2+), peptone, phenylalanine, Hepes buffer (pH 7.4), and CaR-specific calcimimetic, cinacalcet, stimulated gastrin and acid secretion, whereas the calcilytic, NPS 2143, inhibited secretion only in the wild-type mouse. Consistent with known growth and developmental functions of CaR, G-cell number was progressively reduced between 30 and 90 d of age by more than 65% in CaR-null mice. These studies of nutrient-regulated G-cell gastrin secretion and growth provide definitive evidence that CaR functions as a physiologically relevant multimodal sensor. Medicinals targeting diseases of Ca(2+) homeostasis should be reviewed for effects outside traditional Ca(2+)-regulating tissues in view of the broader distribution and function of CaR.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression