|  Help  |  About  |  Contact Us

Publication : Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice.

First Author  Nguyen KT Year  2011
Journal  Neurobiol Dis Volume  42
Issue  3 Pages  381-90
PubMed ID  21310237 Mgi Jnum  J:172765
Mgi Id  MGI:5008711 Doi  10.1016/j.nbd.2011.01.031
Citation  Nguyen KT, et al. (2011) Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice. Neurobiol Dis 42(3):381-90
abstractText  Mitochondria in motor nerve terminals temporarily sequester large Ca(2+) loads during repetitive stimulation. In wild-type mice this Ca(2+) uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Psi(m), motor nerve stimulated at 100 Hz for 5s). We demonstrate that this stimulation-induced Psi(m) depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Psi(m) depolarizations decayed slowly and incremented with successive stimulus trains. Additional Psi(m) depolarizations occurred that were not synchronized with stimulation. These large Psi(m) depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 muM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca(2+) with Sr(2+), which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Psi(m) depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca(2+) influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca(2+) loads and might thereby contribute to motor terminal degeneration in fALS mice. Psi(m) depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following a 0.5-1h exposure to diamide (200 muM), which produces an oxidative stress, but these depolarizations were not reduced by CsA.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression