|  Help  |  About  |  Contact Us

Publication : Pregnancy and oestrogen regulate sinoatrial node calcium homeostasis and accelerate pacemaking.

First Author  El Khoury N Year  2018
Journal  Cardiovasc Res Volume  114
Issue  12 Pages  1605-1616
PubMed ID  29800268 Mgi Jnum  J:268843
Mgi Id  MGI:6269556 Doi  10.1093/cvr/cvy129
Citation  El Khoury N, et al. (2018) Pregnancy and oestrogen regulate sinoatrial node calcium homeostasis and accelerate pacemaking. Cardiovasc Res 114(12):1605-1616
abstractText  Aims: During pregnancy, there is a significant increase in heart rate (HR) potentially associated with an increased risk of arrhythmias or exacerbation of pre-existing cardiac conditions endangering both mother and foetus. Calcium homeostasis plays an important role in regulating automaticity of the sinoatrial node (SAN); however, its contribution to the accelerated HR during pregnancy remains unknown. Methods and results: Using murine SAN cells, we showed that pregnancy increased L-type Ca2+ current (ICaL) and CaV1.3 mRNA expression, whereas T-type Ca2+ current (ICaT) and its underlying channel were unchanged. Analysis of SAN intra-cellular Ca2+ oscillations showed that the rate of spontaneous Ca2+ transients was significantly higher in pregnant mice along with a higher mRNA expression of ryanodine receptor. Assessment of supra-ventricular arrhythmias using programmed electrical stimulation protocols on anaesthetized mice revealed higher susceptibility in pregnancy. Of note, the modifications associated with pregnancy were reversible following delivery. Furthermore, chronic administration of 17beta-estradiol (E2) to nodal-like human-induced pluripotent stem cell-derived cardiomyocytes (N-hiPSC-CM), control mice, oestrogen-receptor-beta knockout (ERKObeta) but not ERKOalpha mice, accelerated cardiac automaticity, recapitulating the pregnancy phenotype in both mouse and human SAN cell models. Conclusion: Together, these results indicate that pregnancy considerably alters intra-cellular Ca2+ homeostasis sustaining faster HR during pregnancy. Importantly, these changes were dependent on an oestrogen receptor alpha (ERalpha) mechanism that resulted in increased ICaL and spontaneous Ca2+ release from the sarcoplasmic reticulum, highlighting a novel role for oestrogen in regulating HR.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression