|  Help  |  About  |  Contact Us

Publication : CCCP-Induced LC3 lipidation depends on Atg9 whereas FIP200/Atg13 and Beclin 1/Atg14 are dispensable.

First Author  Chen D Year  2013
Journal  Biochem Biophys Res Commun Volume  432
Issue  2 Pages  226-30
PubMed ID  23402761 Mgi Jnum  J:200806
Mgi Id  MGI:5509287 Doi  10.1016/j.bbrc.2013.02.010
Citation  Chen D, et al. (2013) CCCP-Induced LC3 lipidation depends on Atg9 whereas FIP200/Atg13 and Beclin 1/Atg14 are dispensable. Biochem Biophys Res Commun 432(2):226-30
abstractText  Treatment of cells with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial proton gradient uncoupler, can result in mitochondrial damage and autophagy activation, which in turn eliminates the injured mitochondria in a Parkin-dependent way. How CCCP mobilizes the autophagy machinery is not fully understood. By analyzing a key autophagy step, LC3 lipidation, we examined the roles of two kinase complexes typically involved in the initiation and nucleation phases of autophagy, namely the ULK kinase complex (UKC) and the Beclin 1/Atg14 complex. We found that CCCP-induced LC3 lipidation could be independent of Beclin 1 and Atg14. In addition, deletion or knockdown of the UKC component FIP200 or Atg13 only led to a partial reduction in LC3 lipidation, indicating that UKC could be also dispensable for this step during CCCP treatment. In contrast, Atg9, which is important for transporting vesicles to early autophagosomal structure, was required for CCCP-induced LC3 lipidation. Taken together, these data suggest that CCCP-induced autophagy and mitophagy depends more critically on Atg9 vesicles than on UKC and Beclin 1/Atg14 complex.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression