|  Help  |  About  |  Contact Us

Publication : SETD5 Regulates Chromatin Methylation State and Preserves Global Transcriptional Fidelity during Brain Development and Neuronal Wiring.

First Author  Sessa A Year  2019
Journal  Neuron Volume  104
Issue  2 Pages  271-289.e13
PubMed ID  31515109 Mgi Jnum  J:282587
Mgi Id  MGI:6381850 Doi  10.1016/j.neuron.2019.07.013
Citation  Sessa A, et al. (2019) SETD5 Regulates Chromatin Methylation State and Preserves Global Transcriptional Fidelity during Brain Development and Neuronal Wiring. Neuron 104(2):271-289.e13
abstractText  Mutations in one SETD5 allele are genetic causes of intellectual disability and autistic spectrum disorders. However, the mechanisms by which SETD5 regulates brain development and function remain largely elusive. Herein, we found that Setd5 haploinsufficiency impairs the proliferative dynamics of neural progenitors and synaptic wiring of neurons, ultimately resulting in behavioral deficits in mice. Mechanistically, Setd5 inactivation in neural stem cells, zebrafish, and mice equally affects genome-wide levels of H3K36me3 on active gene bodies. Notably, we demonstrated that SETD5 directly deposits H3K36me3, which is essential to allow on-time RNA elongation dynamics. Hence, Setd5 gene loss leads to abnormal transcription, with impaired RNA maturation causing detrimental effects on gene integrity and splicing. These findings identify SETD5 as a fundamental epigenetic enzyme controlling the transcriptional landscape in neural progenitors and their derivatives and illuminate the molecular events that connect epigenetic defects with neuronal dysfunctions at the basis of related human diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

22 Bio Entities

Trail: Publication

0 Expression