|  Help  |  About  |  Contact Us

Publication : Distribution of RGS9-2 in neurons of the mouse striatum.

First Author  Mancuso JJ Year  2010
Journal  J Neurochem Volume  112
Issue  3 Pages  651-61
PubMed ID  19912469 Mgi Jnum  J:156404
Mgi Id  MGI:4420505 Doi  10.1111/j.1471-4159.2009.06488.x
Citation  Mancuso JJ, et al. (2010) Distribution of RGS9-2 in neurons of the mouse striatum. J Neurochem 112(3):651-61
abstractText  Regulators of G protein signaling (RGS) proteins negatively modulate G protein-coupled receptor (GPCR) signaling activity by accelerating G protein hydrolysis of GTP, hastening pathway shutoff. A wealth of data from cell culture experiments using exogenously expressed proteins indicates that RGS9 and other RGS proteins have the potential to down-regulate a significant number of pathways. We have used an array of biochemical and tissue staining techniques to examine the subcellular localization and membrane binding characteristics of endogenous RGS9-2 and known binding partners in rodent striatum and tissue homogenates. A small fraction of RGS9-2 is present in the soluble cytoplasmic fraction, whereas the majority is present primarily associated with the plasma membrane and structures insoluble in non-ionic detergents that efficiently extract the vast majority of its binding partners, R7BP and G(beta5). It is specifically excluded from the cell nucleus in mouse striatal tissue. In cultured striatal neurons, RGS9-2 is found at extrasynaptic sites primarily along the dendritic shaft near the spine neck. Heterogeneity in RGS9-2 detergent solubility along with its unique subcellular localization suggests that its mechanism of membrane anchoring and localization is complex and likely involves additional proteins beside R7BP. An important nuclear function for RGS9-2 seems unlikely.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression