|  Help  |  About  |  Contact Us

Publication : Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse.

First Author  Jing Z Year  2013
Journal  J Neurosci Volume  33
Issue  10 Pages  4456-67
PubMed ID  23467361 Mgi Jnum  J:196280
Mgi Id  MGI:5487685 Doi  10.1523/JNEUROSCI.3491-12.2013
Citation  Jing Z, et al. (2013) Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse. J Neurosci 33(10):4456-67
abstractText  Inner hair cells (IHCs) of the cochlea use ribbon synapses to transmit auditory information faithfully to spiral ganglion neurons (SGNs). In the present study, we used genetic disruption of the presynaptic scaffold protein bassoon in mice to manipulate the morphology and function of the IHC synapse. Although partial-deletion mutants lacking functional bassoon (Bsn(DeltaEx4/5)) had a near-complete loss of ribbons from the synapses (up to 88% ribbonless synapses), gene-trap mutants (Bsn(gt)) showed weak residual expression of bassoon and 56% ribbonless synapses, whereas the remaining 44% had a loosely anchored ribbon. Patch-clamp recordings and synaptic CaV1.3 immunolabeling indicated a larger number of Ca(2+) channels for Bsn(gt) IHCs compared with Bsn(DeltaEx4/5) IHCs and for Bsn(gt) ribbon-occupied versus Bsn(gt) ribbonless synapses. An intermediate phenotype of Bsn(gt) IHCs was also found by membrane capacitance measurements for sustained exocytosis, but not for the size of the readily releasable vesicle pool. The frequency and amplitude of EPSCs were reduced in Bsn(DeltaEx4/5) mouse SGNs, whereas their postsynaptic AMPA receptor clusters were largely unaltered. Sound coding in SGN, assessed by recordings of single auditory nerve fibers and their population responses in vivo, was similarly affected in Bsn(gt) and Bsn(DeltaEx4/5) mice. Both genotypes showed impaired sound onset coding and reduced evoked and spontaneous spike rates. In summary, reduced bassoon expression or complete lack of full-length bassoon impaired sound encoding to a similar extent, which is consistent with the comparable reduction of the readily releasable vesicle pool. This suggests that the remaining loosely anchored ribbons in Bsn(gt) IHCs were functionally inadequate or that ribbon independent mechanisms dominated the coding deficit.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression